One Health and the control and prevention of antimicrobial resistance: Perspectives from human medicine

Cornelius J. Clancy, M.D.

Chief, Infectious Diseases

VA Pittsburgh Healthcare System

Director, XDR Pathogen Lab and

Mycology Research Unit

University of Pittsburgh

One Health, One Planet 2019
Phipps Conservatory and Botanical Gardens
Pittsburgh, PA
14 March 2019

An illustrative case, 2019

The rise of CRE* superbugs

HEALTH

MAR 5, 2015, 12:27 AM ET

Two More Hospitals Report 'Superbugs' on Endoscopes

By MAGGIE FOX

Hospitals Plagued by Unbeatable 'Superbugs'

'USA TODAY' FINDS THOUSANDS OF CASES IN RECENT YEARS

(NEWSER) - US hospitals are quietly fighting an incredibly high stakes war that they look unlikely to win against "superbugs" that resist even the most potent antibiotics available, a USA Today investigation has concluded. The paper has compiled evidence showing that hospitals across the country have seen thousands of infections from... More »

The rise of CRE* superbugs

HEALTH

MAR 5, 2015, 12:27 AM ET

Two More Hospitals Report 'Superbugs' on Endoscopes

By MAGGIE FOX

Hospitals Plagued by Unbeatable 'Superbugs'

'USA TODAY' FINDS THOUSANDS OF CASES IN RECENT YEARS

(NEWSER) - US hospitals are quietly fighting an incredibly high stakes war that they look unlikely to win against "superbugs" that resist even the most potent antibiotics available, a USA Today investigation has concluded. The paper has compiled evidence showing that hospitals across the country have seen thousands of infections from... More »

FIGURE 1-3: Percentage of carbapenem-resistant Klebsiella pneumoniae, by country (most recent year, 2011–2014)

Source: CDDEP 2015, WHO 2014 and PAHO, forthcoming

*Carbapenem Resistant Enterobacteriaceae

The rise of CRE* superbugs

HEALTH

MAR 5, 2015, 12:27 AM ET

Two More Hospitals Report 'Superbugs' on Endoscopes

By MAGGIE FOX

Hospitals Plagued by Unbeatable 'Superbugs'

'USA TODAY' FINDS THOUSANDS OF CASES IN RECENT YEARS

(NEWSER) - US hospitals are quietly fighting an incredibly high stakes war that they look unlikely to win against "superbugs" that resist even the most potent antibiotics available, a USA Today investigation has concluded. The paper has compiled evidence showing that hospitals across the country have seen thousands of infections from... More »

10 million deaths due to drug-resistant infections per year in 2050

FIGURE 1-3: Percentage of carbapenem-resistant Klebsiella pneumoniae, by country (most recent year, 2011–2014)

Source: CDDEP 2015, WHO 2014 and PAHO, forthcoming

*Carbapenem Resistant Enterobacteriaceae

An illustrative case, 2019

An illustrative case, 2019

Lost global production due to antimicrobial resistance 2016-2050: \$100 trillion

Antibiotic resistance threats

table.2

Urgent Threats

Clostridium difficile Carbapenem-resistant Enterobacteriaceae Neisseria gonorrhoeae

Serious Threats

Multidrug-resistant Acinetobacter
Drug-resistant Campylobacter
Fluconazole-resistant Candida
Extended spectrum Enterobacteriaceae
Vancomycin-resistant Enterococcus
Multidrug-resistant Pseudomonas aeruginosa
Drug-resistant nontyphoidal Salmonella
Drug-resistant Salmonella serotype Typhi
Drug-resistant Shigella
Methicillin-resistant Staphylococcus aureus
Drug-resistant Streptococcus pneumoniae
Drug-resistant tuberculosis

Concerning Threats

Vancomycin-resistant *Staphylococcus aureus* Erythromycin-resistant Group A *Streptococcus* Clindamycin-resistant Group B *Streptococcus*

Table 2. US Centers for Disease Control and Prevention list of the greatest drug-resistant microbial threats in the United States.⁶

History of penicillin resistance

"... the thoughtless person playing with penicillin is morally responsible for the death of the man who finally succumbs to infection with the penicillin-resistant organism."

26 June, 1945

"Surveys of hospitals have found that practices to improve antimicrobial use are frequently inadequate and not routinely implemented"

Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship

Timothy H. Dellit, Robert C. Owens, John E. McGowan, Jr., Dale N. Gerding, Robert A. Weinstein, John P. Burke, W. Charles Huskins, David L. Paterson, Neil O. Fishman, Christopher F. Carpenter, P. J. Brennan, Marianne Billeter. and Thomas M. Hooton¹²

"Harbonview Medical Center and the University of Washington, Seattle; "Maine Medical Center, Portland; "Emory University, Atlanta, Georgia;
"Hines Veterans Affairs Hospital and Loyola University Stritch School of Medicine, Hines, and "Stroger (Cook County) Hospital and Rush
University Medical Center, Chicago, Illinois; "University of Utah, Salt Lake City; "Mayo Clinic College of Medicine, Rochester, Minnesota;
"University of Pittsburgh Medical Center, Pittsburgh, and "University of Pennsylvania, Philadelphia, Pennsylvania; "William Beaumont Hospital,
Royal Dak, Michigan; "Ochner Health System, New Orleans, Louisians; and "University of Miami, Miami, Florida

Clin Infect Dis 2007; 44:159-77

"Surveys of hospitals have found that practices to improve antimicrobial use are frequently inadequate and not routinely implemented"

Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship

Timothy H. Dellit, Robert C. Owens, John E. McGowan, Jr., Dale N. Gerding, Robert A. Weinstein, John P. Burke, W. Charles Huskins, David L. Paterson, Neil O. Fishman, Christopher F. Carpenter, P. J. Brennan, Marianne Billeter. and Thomas M. Hooton¹²

"Harbonview Medical Center and the University of Washington, Seattle; "Maine Medical Center, Portland; "Emory University, Atlanta, Georgia; "Hines Veterans Affairs Hospital and Loyola University Stritch School of Medicine, Hines, and "Stroger (Cook County) Hospital and Rush University Medical Center, Chicago, Illinois; "University of Utah, Salt Lake City," Mayo Clinic College of Medicine, Rochester, Minnesota; "University of Pittsburgh Medical Center, Pittsburgh, and "University of Pennsylvania, Philadelphia, Pennsylvania; "William Beaumont Hospital, Royal Dak, Michigan; "Odshare Health System, New Ofleans, Louisians; and "University of Miami, Miami, Florida

Clin Infect Dis 2007; 44:159-77

MAJOR ARTICLE

Trends in Antimicrobial Drug Development: Implications for the Future

Brad Spellberg, John H. Powers, Eric P. Brass, Loren G. Miller, and John E. Edwards, Jr. 12

'Research and Education Institute and Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center, Torrance, and 'David Geffen School of Medicine, UCLA, Los Angeles, California; and 'Office of Drug Evaluation IV, Center for Drug Evaluation and Research, US Food and Drug Administration, Rockville, Maryland

Clin Infect Dis 2004; 38:1279-86

Mandates for Antimicrobial Stewardship (AMS)

CDC Core Elements of AMS
Hospitals
Nursing homes
Outpatient

Core elements of AMS programs

- Leadership commitment
 - Human, financial, IT resources
- Accountability
 - Single leader (M.D.) responsible for program outcomes
- Drug expertise
 - Single leader (Pharmacist) responsible for improved antibiotic use
- Action
 - Implementing at least one recommended action
- Tracking
 - Monitoring prescribing and resistance
- Reporting
 - Regular reporting on antibiotic use and resistance
- Education
 - Optimal prescribing and resistance

Core AMS team

"There is no single template for a program to optimize antibiotic prescribing"

Does AMS work?

J Antimicrob Chemother 2011; **66**: 1223–1230 doi:10.1093/jac/dkr137 Advance Access publication 2 April 2011

Journal of Antimicrobial Chemotherapy

Impact of antimicrobial stewardship in critical care: a systematic review

Reham Kaki¹, Marion Elligsen², Sandra Walker²⁻⁴, Andrew Simor^{1,4}, Lesley Palmay² and Nick Daneman^{1,4*}

¹Department of Medicine, University of Toronto, Toronto, Ontario, Canada; ²Department of Pharmacy, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; ³Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; ⁴Division of Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

- 38 studies, 6 AMS intervention types
- Reduced utilization (11%-38%), lowered costs (US\$5-10/patient-day), shortened duration of treatment, reduced inappropriate use and adverse events/toxicity
- Not associated with increased nosocomial infection rates, lengths of stay, or mortality
- Interventions beyond >6 mos were associated with reduced resistance

AMS: Still a lot of work to do

AMS: Still a lot of work to do

M. Hong Nguyen, MD

One Health

One Health

Boqvist, Acta Vet Scand 2018

Antibiotic Resistance in Humans and Animals

A National Academy of Medicine Perspective

Antibiotics purchased for livestock in the U.S. in 2014

Antibiotics purchased for humans in the U.S. in 2014

3.5

15.4

million kilograms

"Antimicrobials for livestock account for 80% of the antimicrobials purchased in the United States. To pretend that we can address antibiotic resistance that results from antimicrobial use by focusing on the 20% that occurs in humans and ignoring the 80% that occurs in animals is to fail as a society.

We have a crisis of antibiotic resistance."

y @theNAMedicine

www.nam.edu/Perspectives

Source: FDA, 2015

One Health AMR Case Study 1: Colistin

Health

Antibiotic resistance: World on cusp of 'post-antibiotic era'

By James GallagherHealth editor, BBC News website 19 November 2015

One Health AMR Case Study 1: Colistin

Health

Antibiotic resistance: World on cusp of 'post-antibiotic era'

By James GallagherHealth editor, BBC News website 19 November 2015

Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study

Lancet Infect Dis 2016; 16: 161–68

Published Online November 18, 2015 http://dx.doi.org/10.1016/ S1473-3099(15)00424-7

Yi-Yun Liu*, Yang Wang*, Timothy R Walsh, Ling-Xian Yi, Rong Zhang, James Spencer, Yohei Doi, Guobao Tian, Baolei Dong, Xianhui Huang, Lin-Feng Yu, Danxia Gu, Hongwei Ren, Xiaojie Chen, Luchao Lv, Dandan He, Hongwei Zhou, Zisen Liang, Jian-Hua Liu, Jianzhong Shen

Louis D. Saravolatz, Section Editor

Colistin: The Revival of Polymyxins for the Management of Multidrug-Resistant Gram-Negative Bacterial Infections

Matthew E. Falagas^{1,2,3} and Sofia K. Kasiakou¹

'Alfa Institute of Biomedical Sciences (AIBS) and ²Department of Medicine, "Henry Dunant" Hospital, Athens, Greece; and ³Tufts University School of Medicine, Boston, Massachusetts

Colistin: The Revival of Polymyxins for the Management of Multidrug-Resistant Gram-Negative Bacterial Infections

Matthew E. Falagas^{1,2,3} and Sofia K. Kasiakou¹

'Alfa Institute of Biomedical Sciences (AIBS) and 'Department of Medicine, "Henry Dunant" Hospital, Athens, Greece; and 'Tufts University School of Medicine, Boston, Massachusetts

- China, Brazil, Europe (certain countries)
 - Administered orally to pigs, poultry, calves for treatment, prophylaxis, metaphylaxis of diarrhea, <u>and/or</u> as growth promoter
 - Vastly exceeds use in humans (12,000 tonnes in China)
- Phenotypic resistance testing is technically difficult
 - Not included in routine surveillance of animals, environment, food, humans

Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study

Yi-Yun Liu*, Yang Wang*, Timothy R Walsh, Ling-Xian Yi, Rong Zhang, James Spencer, Yohei Doi, Guobao Tian, Baolei Dong, Xianhui Huang, Lin-Feng Yu, Danxia Gu, Hongwei Ren, Xiaojie Chen, Luchao Lv, Dandan He, Hongwei Zhou, Zisen Liang, Jian-Hua Liu, Jianzhong Shen

Lancet Infect Dis 2016; 16: 161–68

Published Online November 18, 2015 http://dx.doi.org/10.1016/ S1473-3099(15)00424-7

	Year	Positive isolates (%)/number of isolates
Escherichia coli		
Pigs at slaughter	All	166 (20.6%)/804
Pigs at slaughter	2012	31 (14-4%)/216
Pigs at slaughter	2013	68 (25.4%)/268
Pigs at slaughter	2014	67 (20.9%)/320
Retail meat	All	78 (14·9%)/523
Chicken	2011	10 (4.9%)/206
Pork	2011	3 (6.3%)/48
Chicken	2013	4 (25.0%)/16
Pork	2013	11 (22.9%)/48
Chicken	2014	21 (28.0%)/75
Pork	2014	29 (22·3%)/130
Inpatient	2014	13 (1.4%)/902
Klebsiella pneumoniae		
Inpatient	2014	3 (0.7%)/420

Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study

Yi-Yun Liu*, Yang Wang*, Timothy R Walsh, Ling-Xian Yi, Rong Zhang, James Spencer, Yohei Doi, Guobao Tian, Baolei Dong, Xianhui Huang, Lin-Feng Yu, Danxia Gu, Hongwei Ren, Xiaojie Chen, Luchao Lv, Dandan He, Hongwei Zhou, Zisen Liang, Jian-Hua Liu, Jianzhong Shen

Lancet Infect Dis 2016; 16: 161-68

Published Online November 18, 2015 http://dx.doi.org/10.1016/

\$1473-3099(15)00424-7

Figure 2: Structure of plasmid pHNSHP45 carrying mcr-1 from Escherichia coli strain SHP45

Positive isolates (%)/number of isolates Year Escherichia coli Pigs at slaughter 166 (20.6%)/804 Αll Pigs at slaughter 2012 31 (14.4%)/216 Pigs at slaughter 68 (25.4%)/268 2013 Pigs at slaughter 2014 67 (20.9%)/320 Retail meat Αll 78 (14.9%)/523 10 (4.9%)/206 Chicken 2011 Pork 2011 3 (6.3%)/48 4 (25.0%)/16 Chicken 2013 11 (22.9%)/48 Pork 2013 21 (28.0%)/75 Chicken 2014 29 (22.3%)/130 Pork 2014 Inpatient 2014 13 (1.4%)/902 Klebsiella pneumoniae Inpatient 3 (0.7%)/420 2014 Table 2: Prevalence of colistin resistance gene mcr-1 by origin

CRE: Our last line of defense is breached

Liu YY et al. Lancet Infect Dis. 2016 Feb;16(2):161-8. Du H Lancet Infect Dis. 2016 Jan 29. Yao X et al. Lancet Infect Dis. 2016 Jan 29, <u>Bloomberg</u>. AAC 2016 May 26 online; doi:10.1128/AAC.01103-16

Azole antifungals

Azole antifungals

Crop protection, wood preservation, fruit and vegetable mildew and rust

Case Study 3: AMS in the poultry industry

- Ceftiofur was administered to eggs or day-old hatchery chicks as prophylaxis against *E. coli* or egg yolk infections
 - Canadian Integrated Program for Antimicrobial Resistance Surveillance
 - High rates of ceftiofur resistant Salmonellla
 - Ceftriaxone cross-resistance

Case Study 3: AMS in the poultry industry

Case Study 3: AMS in the poultry industry

- Japan, 2012
 - Voluntary withdrawal of ceftiofur use in hatcheries
 - Decrease in cephalosporin-R *E. coli* in broilers
- Canada, 2014
 - Ceftiofur voluntary ban by Canadian poultry industry http://www.chickenfarms.ca/wjat-we-do/antibiotics/fag/
- Europe
 - Label claim for ceftiofur use in day-old chicks withdrawn
- U.S.
 - Off-label use of 3rd generation cephalosporin banned

- Drug classification
 - Limit use of medically important antibiotics

TABLE 1 Classification of importance of antimicrobial classes for human health and animal health

Category	Human health (WHO) (<u>42</u>)	Animal health (OIE) (<u>162</u>)
Critically important	Aminoglycosides Ansamycins Carbapenems and other penems Cephalosporins (3rd and 4th generation) Phosphonic acid derivatives Glycopeptides Glycylcyclines Lipopeptides Macrolides and ketolides Monobactams Oxazolidinones Penicillins (natural, aminopenicillins, and antipseudomonal) Polymyxins Quinolones Drugs used solely to treat tuberculosis or other mycobacterial diseases	Aminoglycosides Amphenicols Cephalosporins (3rd and 4th generation) Macrolides Penicillins (natural, aminopenicillins, aminopenicillins with beta-lactamase inhibitor, antistaphylococcal) Fluoroquinolones Sulfonamides Diaminopyrimidines Tetracyclines
Highly important	Amidinopenicillins Amphenicols Cephalosporins (1st and 2nd generation) and cephamycins Lincosamides Penicillins (antistaphylococcal) Pleuromutilins Pseudomonic acids Riminofenazines Steroid antibacterials Streptogramins Sulfonamides, dihydrofolate reductase inhibitors, and combinations Tetracyclines	Ansamycin—rifamycins Cephalosporins (1st and 2nd generation) Ionophores Lincosamides Phosphonic acid Pleuromutilins Polymyxins (including bacitracin and other polypeptides) 1st-generation quinolones (flumequin, miloxacin, nalidixic acid, oxolinic acid)
Important	Aminocyclitols Cyclic polypeptides Nitrofurantoins Nitroimidazoles	Aminocoumarin Arsenical Bicyclomycin Fusidic acid Orthosomycins Quinoxalines Streptogramins Thiostrepton

AMS

- Align medical, animal, agricultural activities
- Regulatory
 - Antimicrobials in animal growth promotion
 - Extra-label fluoroquinolone, 3rd generation cephalosporin use in animals
 - Prescription-only antibiotics for veterinary use
- Surveillance and research
- Improved sanitation, hygiene and infection prevention
- New therapeutics, diagnostic tests, vaccines

- Communication, education, and training
 - Views on moral implications of antibiotic use
 - Physicians, Veterinarians
 - Limit inappropriate use and resistance ("do no harm")
 - Poultry industry leaders
 - Responsibility to business and employees
 - Interviews with farmers in India indicated that antibiotics are viewed as vitamins and feed supplements

- Communication, education, and training
 - Views on moral implications of antibiotic use
 - Physicians, Veterinarians
 - Limit inappropriate use and resistance ("do no harm")
 - Poultry industry leaders
 - Responsibility to business and employees
 - Interviews with farmers in India indicated that antibiotics are viewed as vitamins and feed supplements
- Human medicine needs to get its own house in order

Acknowledgments

UPMC AMS and XDR Pathogen Lab VAPHS AMS

UPMC AMS

- M. Hong Nguyen MD (Director)
- Ryan Bariola MD (System AMS)
- Brian Potoski PharmD,
- Ryan Shields PharmD
- Erin McCreary PharmD, Rachel Marini PharmD, Tina Khadem PharmD, Greg Eschenauer PharmD, Bonnie Falcione PharmD, Ryan Rivosecchi Pharm D
- Ghady Haidar MD, EJ Kwak MD, Alex Viehman MD
- Lloyd Clarke, Diana Pakstis, Ellen Press

UPMC XDR Pathogen Lab

Binghua Hao PhD, Shaoji Cheng PhD

VAPHS AMS

- Brooke Decker MD (Director)
- Deanna Buehrle PharmD
- Jae Hong, MD

Worldwide emergence of fungal disease and antifungal-R

